

DATA SHEET

CORNING 7980

HPFS[®] Fused Silica Standard Grade Semiconductor Optics

HPFS® Standard Grade, Corning code 7980, is a high purity synthetic amorphous silicon dioxide manufactured by flame deposition. The noncrystalline, colorless, silica glass combines a very low thermal expansion coefficient with excellent optical qualities and exceptional transmittance in the ultraviolet. It is available in a number of grades for different applications.

In order to satisfy the challenging quality requirements of our customers in leading edge applications such as microlithography, Corning is dedicated to continuous improvement. Our investments in research and development, combined with Corning's quality systems, support our technology leadership position and ensure that we meet our customer's requirements on time, every time.

Quality Grade Selection Chart — HPFS® Standard Grade

Corning defines and certifies the quality of HPFS® glass using two criteria: inclusions and homogeneity grade.

Inclusion Class			Homogeneity ^{3,4} ppm							
			Grade							
Class	Total Inclusion ¹ Cross Section [mm ²]	Maximum ² Size [mm]	AA ≤ 0.5	A ≤ 1	B ≤ 1.5	C ≤ 2	D ≤ 3	E ≤ 4	F ≤ 5	G ⁵ NS
0	≤ 0.03	0.10								
1	≤ 0.10	0.28								
2	≤ 0.25	0.50								
3	≤ 0.50	0.76								
4	≤ 1.00	1.00								
5	≤ 2.00	1.27								

NOTES:

- 1. Defines the sum of the cross section in mm^2 of inclusions per 100 cm³ of glass. Inclusions with a diameter ≤ 0.10 mm are disregarded.
- 2. Refers to the diameter of the largest single inclusion.
- 3. Index homogeneity: the maximum index variation (relative), measured over the clear aperture of the blank.
- 4. Index homogeneity is certified using an interferometer at 632.8 nm. The numerical homogeneity is reported as the average through the piece thickness. Blanks with a diameter up to 450 mm can be analyzed over the full aperture. Larger parts can be analyzed using multiple overlapping apertures. The minimum thickness for index homogeneity verification is 20 mm. For thinner parts, the parent piece is certified.
- 5. NS (not specified)

UQG (Optics) Ltd. The Norman Industrial Estate, 99-101 Cambridge Road, Milton, Cambridge CB24 6AT. England. Tel | +00 44 (0) 1223 420329 Fax | +00 44 (0) 1223 420506 Email | info@uqgoptics.com

UQG OPTICS MAKES EVERY EFFORT TO VERIFY 3RD PARTY TECHNICAL DATA BUT ACCEPTS NO RESPONSIBILITY FOR ACCURACY

www.uqgoptics.com

CORNING

DATA SHEET

CORNING 7980

Mechanical and Thermal Properties:

Unless otherwise stated, all values @ 1	25°C				
Elastic (Young's) Modulus 72.7 GPa		Softening Point	1585°C (10 ^{7.6} poises)		
Shear Modulus31.4 GPa		Annealing Point	1042°C (10 ¹³ poises)		
Modulus of Rupture, abraded 52.4 MPa		Strain Point	893°C (10 ^{14.5} poises)		
Bulk Modulus 35.4 GPa		Thermal Conductivity	1.30 W/m K		
Poisson's Ratio	0.16	Thermal Diffusivity		$0.0075 \text{ cm}^2/\text{s}$	
Density	2.201 g/cm ³		0.72 ///		
Knoop Hardness (100 g load)	522 kg/mm ²	Average C.T.E.	0.52 ppm/K 0.57 ppm/K 0.48 ppm/K	0°C-200°C -100°C-200°C	

Chemical Durability and Impurities

Solution		Time	Weight Loss [mg/cm²]	Impurities
5% HCL by weight	@ 95°C	24 h	< 0.010	OH content (by weight): 800-1000 ppm
5% NaOH	@ 95°C	6 h	0.453	Impurities other than $OH: \leq 1000 \text{ ppb}$
0.02N NA ₂ CO ₃	@ 95°C	6 h	0.065	
$0.02N H_2SO_4$	@ 95°C	24 h	< 0.010	
Deionized H ₂ O	@ 95°C	24 h	0.015	
10% HF by weight	@ 25°C	20 m	0.230	
10% NH ₄ F*HF by weight	@ 25°C	20 m	0.220	

Internal Transmittance

HPFS[®] Standard Grade is certified to meet T external ≥ 80%/cm @185nm (T internal ≥ 88%/cm @185nm), when measured through a polished, uncoated sample.

A typical internal transmittance curve for HPFS[®] Standard Grade fused silica is shown here.

UQG (Optics) Ltd. The Norman Industrial Estate, 99-101 Cambridge Road, Milton, Cambridge CB24 6AT. England. Tel | +00 44 (0) 1223 420329 Fax | +00 44 (0) 1223 420506 Email | info@uqgoptics.com

UQG OPTICS MAKES EVERY EFFORT TO VERIFY 3RD PARTY TECHNICAL DATA BUT ACCEPTS NO RESPONSIBILITY FOR ACCURACY

DATA SHEET

CORNING 7980

Refractive Index and Dispersion

Data in 22°C in 760mm Hg dry nitrogen gas

Wavelength [air]	Refractive Index ^{*2}	Thermal Coefficient	Polynomial Dispersion Equation Constants ^{*1}				
λ [nm]	n	$\Delta n / \Delta T^{*3}$ (ppm/K)	A ₀ 2.10	04025406			
1128.64 1.448870		9.6	A1 -1.45	6000330 x 10 ⁻⁴			
1064.00 1.449633		9.6	A ₂ -9.04	9135390 x 10 ⁻³			
1060.00 1.449681		9.6	A ₃ 8.80	01830992 x 10 ⁻³			
1013.98 n. 1.450245		9.6	A ₄ 8.43	5237228 x 10 ⁻⁵			
852 11 n.	852 11 n 1 452469 9 7		A ₅ 1.68	31656789 x 10 ⁻⁶			
$\frac{1.152107}{70652}$		0.0	A ₆ -1.675425449 x 10 ⁻⁸				
656.27 p	1.155117	0.0	A ₇ 8.32	26602461 x 10 ⁻¹⁰			
643 85 n _C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Sellmeier Dispersion Equation Constants *2				
632.80 n	1.150707	10.0	B ₁ 0.68374049400				
590.20 m	$\frac{632.80 \text{ n}_{\text{He-Ne}}}{1.457021}$		$B_2 = 0.42032361300$				
589.29 n _D 1.458406		10.1	B ₃ 0.58502748000				
58/.56 n _d	587.56 n _d 1.458467		C ₁ 0.00460352869				
546.07 n _e	1.460082	10.2	C ₂ 0.01	1339688560			
486.13 nF	486.13 nF 1.463132		C ₃ 64.49327320000				
479.99 n _F	1.463509	10.4					
435.83 n _g	1.466701	10.6	Δn/ΔT Dispersion Equa	ation Constants *3			
404.66 n _h	1.469628	10.8	C ₀ 9.39	20590			
365.01 n _i	1.474555	11.2	$C_1 = 0.23$	35290			
334.15	1.479785	11.6	$-\frac{C_2}{-1.3}$	18560 x 10 ⁻³			
312.57	1.484514	12.0	$C_3 3.02$	28870 x 10-4			
308.00	1.485663	12.1	Other Optical Propertie	25			
248.30	1.508433	14.2	v _d	67.79			
248.00	1.508601	14.2	v _e	67.64			
214.44	1,533789	17.0	n _F -n _C	0.006763			
206.20	1 542741	18.1	n _F -n _C	0.006802			
104.17	1.512711	20.4	Stress Coefficient	35.0 nm/cm MPa			
102.40	1.557012	20.7	Striae	ISO 10110-4 Class			
193.40	1.500208	20.5		5/Thickness Direction			
193.00	1.560841	20.6	Birefringence	$\leq 1 \text{ nm/cm}$, lower			
184.89	184.89 1.575131 22.7			specifications available			

*1 Polynomial Equation: n² = A₀ + A₁ λ^4 + A₂ λ^2 + A₃ λ^{-2} + A₄ λ^{-4} +A₅ λ^{-6} + A₆ λ^{-8} + A⁷ λ^{-10} with λ in µm *2 Sellmeier Equation: n²-1 = B₁ $\lambda^2/(\lambda^2-C_1)$ + B₂ $\lambda^2/(\lambda^2-C_2)$ + B₃ $\lambda^2/(\lambda^2-C_3)$ with λ in µm *3 $\Delta n/\Delta T$ Equation (20-25°C) = C₀ + C₁ λ^{-2} + C₂ λ^{-4} + C₃ λ^{-6} with λ in µm

UQG (Optics) Ltd. The Norman Industrial Estate, 99-101 Cambridge Road, Milton, Cambridge CB24 6AT. England. Tel | +00 44 (0) 1223 420329 Fax | +00 44 (0) 1223 420506 Email | info@uqgoptics.com